
Team Controller
Northern Arizona University
Flagstaff, Arizona
October 20th, 2023

Zachary Parham (Team Lead): zjp29@nau.edu
Italo Santos (Mentor): ids37@nau.edu
Bradley Essegian: bbe24@nau.edu
Brandon Udall: bcu8@nau.edu
Dylan Motz: djm658@nau.edu

Tech Feasibility

Northrop Grumman

Weapon System Support Software

Harlan Mitchell

Laurel Enstrom

1

mailto:zjp29@nau.edu
mailto:ids37@nau.edu
mailto:bbe24@nau.edu
mailto:bcu8@nau.edu
mailto:djm658@nau.edu

Table Of Contents

Table Of Contents.. 2
1.0 Introduction..3
2.0 Technological Challenges.. 4

2.1 Programming language.. 4
2.2 Graphical User Interface.. 4
2.3 Serial Communication... 4
2.4 Installer.. 4

3.0 Technological Analysis..4
3.1 Programming Language...5

3.1.1 Desired Characteristics... 5
3.1.2 Alternatives... 5
3.1.3 Analysis...6
3.1.4 Chosen Approach..8
3.1.5 Feasibility..9

3.2 Graphical User Interface.. 9
3.2.1 Desired Characteristics... 9
3.2.2 Alternatives... 9
3.2.3 Analysis...10
3.2.4 Chosen Approach..11
3.2.5 Feasibility..12

3.3 Serial Communication... 12
3.3.1 Desired Characteristics... 12
3.3.2 Alternatives... 13
3.3.3 Analysis...14
3.3.4 Chosen Approach..16
3.3.5 Feasibility..16

3.4 System Installer..17
3.4.1 Desired Characteristics... 17
3.4.2 Alternatives... 18
3.4.3 Analysis...19
3.4.4 Chosen Approach..21
3.4.5 Proving Feasibility..22

4.0 Integration.. 23
5.0 Conclusion... 24
6.0 References..25

2

1.0 Introduction
Northrop Grumman is a multi-billion dollar defense contractor whose equipment stock the
hangars and garages of the United State’s military. A cornerstone in the contracting space, they
have built everything from the B-2 Stealth Bomber to the James Webb Space Telescope [1]. It’s
no surprise that these huge projects create hundreds of thousands of diagnostic data. In today’s
climate, ensuring that our military armament systems are functioning optimally is not just a
matter of national security; it is a global concern.

Our clients are Harlan Mitchell, the Senior Systems Engineer Manager, and Laurel Enstrom, the
Principal Systems Engineer, for the armaments sector at Northrop Grumman. Along with
pioneering new weapon systems, our clients must also endure a cumbersome and
resource-intensive approach for problem diagnosis with their products. This results in higher
expenses, longer downtimes, and hinders the overall operational efficiency of Northrop
Grumman. Getting the aforementioned diagnostic data is difficult and expensive for our clients.
Currently, when a problem arises, the standard procedure is to dispatch an engineer to the
customer’s location. Not only is this time consuming but also resource intensive, oftentimes
requiring multiple trips to come up with a solution for their customer. They must physically
examine the armament systems and bring an engineering tool to understand and then rectify the
issue. The development of a new diagnostic tool for end users is essential. However, the
complexity and critical nature of armament systems present unique challenges that must be
addressed.

To revolutionize the process of diagnosing and resolving issues with military defense systems,
Team Controller and Northrop Grumman present a new solution—a simple, easy to use, and
secure desktop application that implements a graphical user interface (GUI) to display and
download diagnostic information. This product shall be able to read diagnostic data via serial
communication, directly interfacing with the weapon controller. This is similar to how an OBD2
scanner functions in the automotive industry. The main objective of our solution is to provide the
end-users with the ability to easily collect diagnostic data without the need for dispatching
engineers to their location. Team Controller has identified the key design challenges for this
project to be: a desktop application, which is a GUI, with serial communication, that requires a
system installer. This document will address our solution to these challenges and analyze
potential technologies that will aid in the implementation of this software.

3

2.0 Technological Challenges
There are four main challenges associated with this project that will need to be addressed for
successful development of the weapon system support software.

2.1 Programming language
The programming language the team uses will be a pivotal factor in the success of this project.
The desktop application created using this language will need to be OS agnostic and able to run
on both Windows versions 10 and 11.

2.2 Graphical User Interface
The graphical user interface is where Northrop Grumman can navigate to the specific code type
and categories produced by the weapon. The graphical user interface must be simple to use and
easy to understand as well as being professional enough to show clients of Northrop Grumman.

2.3 Serial Communication
This is how the desktop application will communicate with the weapon controller and read its
diagnostic data. The application must decipher which communication protocol is in use at which
point the controller will send the diagnostic data to be displayed and read by Northrop
Grumman’s clients.

2.4 Installer
The application will have a simple installer that must act without admin privileges or time
consuming setups. The installer must work with as little IT support as possible to allow the quick
analysis of the controller data.

3.0 Technological Analysis
Each of the above technological challenges will be dove into to reveal the nuances and potential
solutions to each. The team will begin with the programming language, transition to reading the
controller’s serial input, and finally the application installer. For each of the listed challenges, the
team will first discuss the desired characteristics of the ideal solution. Next, we will introduce
some alternative solutions and evaluate each in comparison to the ideal solution. Finally, we will
rate and explain the chosen approach.

3.1 Programming Language
The desktop application and more importantly, the programming language, is the base platform
for this project. All functionalities discussed in the challenges will need to be implemented here.

4

It is vital that the team select the programming language that will accomplish all the challenges
listed above.

3.1.1 Desired Characteristics
The following section will discuss the characteristics the team looks for when choosing a
programming language. For each of the characteristics, there will be a point system to clearly
and fairly choose a dominant language. The point system is out of 5 points, and any deductions
will be shown in Table 3.1.

- OS Independent: The selected programming language must be able to run on different
versions of Windows, namely 10 and 11. A stretch goal is to be able to have the code run
on Linux operating systems.

- Speed: Due to the large amount of data that this project will be dealing with, the program
must be fast to show the diagnostic data in real time. The team does not know the
specifications of the computers this software will run on. That being said, the software
should be efficient enough to run anywhere.

- Modularity: To prevent Team Controller from getting tied up in regulatory documents
and courses, Northrop Grumman decided to generalize the project. Upon handoff, the
weapon system support software must be modular to assist in-house software engineers in
adding new functionalities.

- Comfortability: To aid in the development process of the weapon system support
software, the programmers must be able to code reliably in the given programming
language.

3.1.2 Alternatives
All three languages listed below were specifically mentioned in the client generated project
overview document.

- C: Created around the 1970’s by Dennis Ritchie, C still stands out as a mainstay of
computer programming. C has been used in thousands of applications such as in the
Linux Kernel to embedded systems like motor vehicles [2].

- C++: This programming language introduces object-oriented programming to the
powerful C. Bjarne Stroustrup released C++ in 1985 as an expansion to the capabilities of
C [2].

5

- Python: Python was released in 1991 by Guido van Rossum. This language is widely
used for its fast data processing power. Python also has simple GUI libraries [3].

3.1.3 Analysis
In this section, we will discuss the advantages and disadvantages of each of the chosen languages
above.

C
- OS Independent: C is a compiled language, meaning its executable will run on almost

any operating system [4]. For our purposes, C’s compilation process can be targeted for
both Linux and Windows operating systems. Using preprocessor directives such as #ifdef
and #ifndef will ensure the most functionality is available for both operating systems.

- Score: 5 out of 5 points

- Speed: C’s low-level memory management creates an ideal speed situation. Given the
vast amount of data that the controller generates, the program should be able to content
efficiently with it.

- Score: 5 out of 5 points

- Modularity: C is not a very modular language and loses points in this section because it
would be cumbersome to add new functionalities to the code. While structs do exist in C,
they do not exhibit full object-oriented features.

- Score: 3 out of 5 points

- Comfortability: All team members have extensive experience with C. They are all
familiar with the syntax and structure and have multiple years of experience working
directly with C.

- Score: 5 out of 5 points

Overall, C is a great language for this project. However, the lack of object oriented features
means it ranks lower than the rest of the languages on this list. All team members are familiar
with C and its syntax as the team have spent at least two and a half years learning and working
with this language.

C++
- OS Independent: Like C, C++ is a compiled language. This means that the compilation

process can be directed for each target operating system [4].
- Score: 5 out of 5 points

6

- Speed: Being based off of C, C++ enjoys the benefits of being quick to run and compile.
The differences between the two languages are so close they are negligible. The ratings
for both languages in the fast category are the same.

- 4 out of 5 points

- Modularity: Modularity is the key difference between C and C++. While C has limited
abstraction capabilities, C++ has the ability to employ classes and structs. This makes the
modularity of C++ a clear advantage when compared to C.

- Score: 5 out of 5 points

- Comfortability: C and C++ syntax are basically the same. The basic functionalities are
defined using the same structure such as loops and functions. The only difference is when
using classes and object-oriented features. However, the team had taken multiple classes
where object-oriented design was emphasized so this difference is not an issue.

- Score: 5 out of 5 points

C++ is a great language. It expands the best aspects of C and turns them into something more
efficient and easier to read. The modularity is a huge part of the project as the team will turn the
software over to inhouse developers at Northrop Grumman. The team is comfortable with both C
syntax and object oriented features.

Python
- OS Independence: While Python doesn’t have the same advantages of C and C++

compilation process, Python is an interpreted language. This means that it can be run on
different operating systems as long as there is an interpreter present [5]. This is a
downside as we do not yet know the permissions and allowances of the targeted
computers and IT systems.

- Score: 4 out of 5 points

- Speed: Python is widely used in the context of big data and data science. Python’s speed
is a big plus here. However, when compared to C/C++’s speed in context the amount of
data this project will be handling, Python’s speed loses out.

- Score: 4 out of 5 points

- Modularity: Python is an object-oriented programming language. This means classes
and abstractions are available for this project.

- Score: 5 out of 5 points

7

- Comfortability: This section is where Python’s rating goes down. All team members
have some experience with Python, however, it was the first language that we learned in
an academic setting. The content in that class was the bare basics to allow us to learn the
fundamentals of programming.

- Score: 3 out of 5 points

Python is a great programming language for big data computations. However, the comfortability
and speed when compared to C/C++ reduces its score.

3.1.4 Chosen Approach
The programming language that Team Controller has chosen is C++. This selection is shown in

Table 3.1. Overall, the team is most familiar with the syntax and structure of C but we needed to

include object-oriented programming features such as classes, abstraction, inheritance etc. This

aspect of C++ would make the overall project more readable and easier to understand.

OS Independence Speed Modularity Comfortability Average score

C 5 5 3 5 4.5

C++ 5 4 5 5 4.75

Python 4 4 5 3 4

Table 3.1

C scores five points in the operating system independence category because of portability with

its compilation processes. The speed category is also scored at five due to its low level memory

management, however, C’s modularity is where the language lags behind its competitors as the

language does not offer object oriented features. The team is very well versed in C so

comfortability is scored at a five.

As mentioned above, C++ is the clear winner of this comparison. The deductions taken when

looking at C are not taken here due to C++’s object oriented nature. C++ scored a 4 in the speed

section to account for the small speed difference between C and C++.

8

Python scored four points in the operating system independence category due to the fact that an

interpreter would be required to run the code. Python’s score for speed is due in part to the

language's lack of low level memory management. Python’s comfortability was a huge deciding

factor with the team, which is why it scored a three in that category.

3.1.5 Feasibility
As mentioned previously, all team members have years of experience with C++. To prove that
this language is correct for this project, the team will create a demo project to show our clients.
This will serve as a guiding system to check in with our clients and make sure we are on the
correct path.

3.2 Graphical User Interface
The GUI will be the front-end to our project. It is important to choose the correct library to use.
The library will also need to be understandable and have all the required features to meet the
clients needs.

3.2.1 Desired Characteristics
For the GUI it will need the following characteristics:

- Simplicity: The graphical user interface library will need to be easy to understand and
quick to learn.

- Compatibility: The GUI library must be able to work with both windows 10/11 and it
needs to work with C++. A stretch goal is for the software to run on linux and having a
library work on both linux and windows is ideal.

- Aesthetics: The GUI should be easy to create, look nice, and professional. The GUI
library should provide a framework to make the GUI look aesthetically pleasing.

3.2.2 Alternatives
- Windows Form: A windows based IDE that includes many different language support.

Windows Form has a feature that allows developers to create a windows GUI utilizing a
C++ based front-end [16].

- QT: A cross platform IDE that includes multiple languages to help developers create
simple and easy desktop softwares, mobile, and embedded platforms [17]. The front-end

9

library that QT provides makes front-end development easy to learn and has proven to
help developers complete tasks faster [17].

- wxWidgets: A cross platform C++ library that helps developers create front-end
applications with C++ [15]. With this library once the developer creates the front-end it
will compile and work on all platforms.

3.2.3 Analysis
This section will discuss the advantages and disadvantages of each of the GUI library/tool stated
above in section 3.4.2. Each GUI tool will be given a score on each of the characteristics and an
overall score will be calculated.

Windows Form
- Simplicity: Windows Form utilizes the window form application to create a simple and

easy front-end. With Windows Form the developer is able to visually drag and drop
buttons and many more features onto a blank windows form.

- Score: 4 out of 5 points

- Compatibility: Since Windows Form utilizes the window form application it uses a
windows based library for the front-end. This means it will work just fine for windows
however for the stretch goal it will not be compatible with linux.

- Score: 3 out of 5 points

- Aesthetics: Since Windows Form features a drag and drop style front-end development it
makes it easier for the developer to create a nicer/professional looking graphical user
interface.

- Score: 5 out of 5 points

Overall Windows Form provides a great framework for creating a GUI. It is simple and
easy to use. However the only downside is that it's not compatible with linux so achieving that
stretch goal wouldn’t be possible.

Qt
- Simplicity: Since QT is the newest out of the options here its IDE is much more user

friendly and easy to create a GUI. Just like Windows Form, QT features a drag and drop
style front-end tool and this makes it very easy to learn.

- Score: 5 out of 5 points

10

- Compatibility: Unlike Windows Form, QT is cross platform meaning it will work on all
platforms. This means that it will accomplish our goal to work on both versions of
windows and our stretch goal of linux.

- Score: 5 out of 5 points

- Aesthetics: Just like Windows Form, QT features drag and drop making it simple and
easy to create a nice/professional looking GUI.

- Score: 5 out of 5 points

Overall QT provides a great framework for creating a GUI. It is very simple to use and provides
some newer features. It is also cross platform so it makes accomplishing both our goals possible
and QT makes it easy to create an aesthetically pleasing GUI.

wxWidgets
- Simplicity: Since wxWidgets is just a library and doesn’t have an IDE it is harder to

learn and design. For example the developer has to code all the GUI. This makes it
difficult for the developer to visualize the front-end without continuous testing. Also it
will take more time to develop the front-end.

- Score: 2 out of 5 points

- Compatibility: wxWidgets is also cross platform just like QT and this means that it will
accomplish both our goals.

- Score: 5 out of 5 points

- Aesthetics: wxWidgets doesn’t provide drag and drop like QT or Windows Form so it
will take more time to create a nicer/professional looking graphical user interface.

- Score: 2 out of 5 points

Overall wxWidgets is a great library for developing graphical user interfaces. However since it
doesn't provide drag and drop functionality like Windows Form and QT it will take the team
more time to learn and develop the front-end. The only benefit to using wxWidgets is its cross
platform.

3.2.4 Chosen Approach
The chosen GUI that Team Controller has chosen is QT. It is simple, easy to learn, and provides
all the needed functionality for the graphical user interface. The QT IDE is a great development
tool and the drag and drop functionality makes it much nicer to visualize the development
process of the GUI.

11

Simplicity Compatibility Aesthetics Average Score

Windows Form 4 3 5 4

QT 5 5 5 5

wxWidgets 2 5 2 3

Table 3.2

3.2.5 Feasibility
The team will learn and utilize QT’s GUI design tool. As a team we will all take time to learn the

QT IDE and all its libraries and create a demo GUI for our clients.

3.3 Serial Communication
Serial communication is one of the most common forms of reading and writing data between two
devices. Our product must be able to conduct serial communication via a hardwired connection.
The protocols we will be using are ambiguous between rs485, rs422, and rs232. A method to
identify which protocol the specific hardware is using is essential to ensuring the end user is
getting the data as expected. We will also need a method to actually read (rx) the information
being transmitted in the physical cable. No writing (tx) to the controller will be necessary as we
are just collecting diagnostic data.

3.3.1 Desired Characteristics
For this challenge, our team needs to research libraries or methods that provide a means of
conducting communication with the controller. There are hundreds of different serial libraries,
but something lightweight may be best since we only need to identify the protocol and read data.
The following are characteristics on our wishlist for technologies/libraries to use in our code:

- OS-agnostic: Ensuring that our program can run on multiple operating systems without
major modifications requires cross-platform libraries. Some libraries may only work for
one operating system. Mainly, it must be compatible with both Windows 10 and 11.
However, since our stretch goal is to have it ported to Linux, this should be a major
consideration. The lowest possible score of 0 means it is not compatible with any of the
operating systems listed above. The highest possible score of 5 means it is compatible
with almost any operating system.

12

- Multi-Protocol Compatibility: Since military armament systems may use many
different communication protocols, the library should have support for various serial
interfaces. RS-422 is most commonly used at Northrop Grumman, but it should also have
support for RS-485, RS-232, and more. The lowest possible score of 0 means it is not
compatible with any of the serial protocols listed above. The highest possible score of 5
means it is compatible with all three ports listed above, and more.

- Licensing: Not all libraries will be open source or free for commercial use. For the
purpose of this assignment, we need something that is free of charge but still offers
comprehensive documentation and usage guidelines. This will ensure that the developers
for Team Controller can easily integrate the library into the diagnostic tool. The lowest
possible score of 0 means it is not free, and provides very little support. The highest
possible score of 5 means that it has extensive documentation as well as an open source
license.

- Lightweight: The overall functionality of the library should be lightweight since we do
not need much utility out of it. The library will mainly be used for (1) connecting to the
ambiguous serial port on the hardware running the product, and then (2) reading the data
being transmitted. The lowest possible score of 0 means it does not accomplish either of
those tasks while substantial in size. The highest possible score of 5 means that it does
everything we need without being substantial in size.

3.3.2 Alternatives
- Qt Serial Port: This library is part of the Qt framework that was mentioned in section

3.2.2. The most important feature is that it is widely known for its cross-platform
capabilities and ability to integrate with the GUI framework. It also abstracts the serial
protocols to be able to work with all serial devices [6].

- Boost.Asio: This library is popular in C++ for its ability to process several methods of
I/O communication asynchronously. In terms of serial communication, it does provide
cross-platform support for various operating systems and serial interfaces.

- Serial: This library has a much smaller community developed by William Woodall and
John Harrison. It has cross-platform capabilities while providing the most basic
functionality (open, close, read, write) [7]. It is lightweight and has no dependencies.

- Generic iostream: This would involve leveraging C++’s standard I/O streams for serial
input with the controller. This wouldn’t rely on any third party libraries and is the most
minimalistic approach to perform very basic serial communication.

13

3.3.3 Analysis
Each of these alternatives have their own pros and cons and are all viable options for us to use in
our product. Each approach will be analyzed and given a score based on the four desired
characteristics from Section 3.3.1.

Qt Serial Port
- OS-agnostic: This entire framework is known for its cross-platform capabilities for many

versions of Windows and Linux. This is exactly what we are looking for in terms of
portability.

- Score: 5 out of 5 points

- Multi-Protocol Compatibility: This library provides support for various serial protocols,
most notably RS-422, RS-485, and RS-232 [6]. It is designed to make it easier for the
developer to work with serial devices regardless of the specific protocol being used by
methods of abstraction.

- Score: 5 out of 5 points

- Licensing: Qt’s framework is freely available for use/change/distribution under the
GPLv3 License [8]. This means we can use the library to its full extent with much more
flexibility and with a larger community behind it.

- Score: 5 out of 5 points

- Lightweight: The entire Qt framework is quite comprehensive, but Qt Serial Port is a
portable library which makes it reasonably lightweight. Integrating with the Qt GUI
framework may be a bit more intensive but not very complex.

- Score: 3 out of 5 points

Boost.Asio
- OS-agnostic: The library was designed for cross-platform use in most situations. In serial

communication, it abstracts (most) platform-specific details and should suit our needs for
the purposes of this project.

- Score: 4 out of 5 points

- Multi-Protocol Compatibility: Although this library is definitely capable of handling
multiple serial protocols, it may require more manual configuration and be less user
friendly for our developers [9].

- Score: 4 out of 5 points

14

- Licensing: The Boost framework is freely available for use/change/distribution under
their Boost Software License [9]. This means we can use the library to its full extent with
much more flexibility.

- Score: 5 out of 5 points

- Lightweight: This library was designed to be efficient and lightweight. Because of this,
it may be more complex to set up and integrate with less features.

- Score: 4 out of 5 points

Serial
- OS-agnostic: The library was designed for cross-platform use specifically in Linux and

most versions of Windows.
- Score: 5 out of 5 points

- Multi-Protocol Compatibility: Serial was designed to be used for very basic serial
communication, particularly RS-232 [7]. Like Boost.Asio, it does have support for other
serial protocols but may require more manual configuration.

- Score: 3 out of 5 points

- Licensing: The software is freely available for use/change/distribution under the MIT
License. This means we can use the library to its full extent with much more flexibility.

- Score: 5 out of 5 points

- Lightweight: This library was designed to be super efficient/lightweight, and also very
easy to use for the simplest of tasks. However, it is a port from another Python library and
lacks some useful documentation.

- Score: 4 out of 5 points

Generic C++ iostream
- OS-agnostic: Although C++ in nature is quite cross-compatible, without a library it lacks

basic serial communication support that may require manual configuration depending on
the OS.

- Score: 3 out of 5 points

- Multi-Protocol Compatibility: In terms of serial protocols, technically this is the most
compatible option but again may require much more manual configuration depending on
the specific port being used.

- Score: 3 out of 5 points

15

- Licensing: iostream is a built-in library that’s standard with C++. It is freely available
without any extra dependencies or requirements.

- Score: 5 out of 5 points

- Lightweight: This is the most minimalistic approach for serial communication, only
requiring the built-in libraries. However, creating our own code for open/close/read
methods may end up being quite complex.

- Score: 4 out of 5 points

3.3.4 Chosen Approach
The alternative that Team Controller has chosen is the library Qt Serial Port. The corresponding

points for each approach is reflected in Table 3.3. Overall, using Qt’s framework will prove to be

useful not only for serial communication all around but also for interfacing with the GUI.

Although it loses some points for its size, most of the libraries we will need are portable and are

lightweight themselves. Other than that, it is perfectly compatible with all operating systems

we’re concerned with as well as all serial protocols we could possibly need. It is also completely

free for use with extensive documentation and usage guidelines.

OS-Agnostic Protocol Compatibility Licensing Lightweight Avg. Score

Qt Serial Port 5 5 5 3 4.5

Boost.Asio 4 4 5 4 4.25

Serial 5 3 5 4 4.25

iostream 3 3 5 4 3.75

Table 3.3

3.3.5 Feasibility
Using Qt Serial Port, we will be able to implement serial communication into our simple user

interface effortlessly. Demos of very simple open, close, and read methods of abstracted data will

be shown in our tech demo and MVPs. From there Qt gives the option to scale our system to fit

future goals and requirements

16

3.4 System Installer
The system installer should be a file which will be downloaded and run by the user. The installer

is responsible for collecting all the user preferences we need in order to run the application. Then

the installer will set up our application’s environment including creating directory paths for our

system to work in and adding our applications files to their designated directories. The installer is

also responsible for deleting the application if the user decides to do so.

3.4.1 Desired Characteristics
When deciding on a technology to use for our installer. We will prioritize the following

characteristics (listed most important to least important):

Free to Use

For the purposes of this project we do not have access to any paid services. Therefore the

installer technology we choose MUST be free.

Simple

Since ownership of this product will eventually be handed off to Northrop Grumman. We should

be thinking ahead to try to reduce the complexity involved with modifying or updating the

system. Additionally choosing a simple technology will help the team in the short term by saving

time in the development phase for the installer. Choosing a simple installer will also help keep

the user from getting confused or overwhelmed when setting up the system.

High Speed

Ideally our application should be able to install in under a minute, though the shortest amount of

time we can achieve is preferable.

The installer technology we choose should at a minimum be free, then the other characteristics

will be considered and compared between the various free technologies. Unfortunately a separate

installer will have to be developed if we want to meet our stretch goal of porting the project to

linux. As it is not possible to create a cross compatible installer as of right now.

17

3.4.2 Alternatives
Options for our Windows Installer:

● Inno Setup is a compiler for .exe installer files. It was developed by a well known

software developer Jordan Russel, who is responsible for developing many windows

utilities. Its main use case is for distributing applications that are meant to run in windows

environments. Inno Setup has a convenient GUI for naming your program, providing the

version, the directory structure, etc. Then once all the data is input you can compile your

installer and you're ready to distribute the application. Additional features include built in

uninstaller, multiple language support and file compression and encryption.

● WiX Toolset is an open source project which has had a wide variety of developers over

the years. It is a direct alternative to Inno Setup and it has the same use case, except it can

support the creation of .msi files. WiX is unique because it is a VS Code extension

meaning we could potentially gain easy access to the installer portion of the project

through our existing work environment. Another advantage to WiX is the fact that it has a

large support infrastructure which we can use to debug and study the technology. It also

provides the basics of an installer including custom environment setup version control

features and uninstaller.

● NSIS is also an open source project, it was launched in 2000 and has a very large user

base. It also makes msi installer files for windows operating systems. This framework is

extremely similar to the 2 previously mentioned. It provides mostly the same features

with a slightly different user interface.

Options for our Linux Installer:

● Debian is an open source software package installer developed by the linux community.

A .deb file contains the software for your project, the necessary directories, and the

18

metadata (things like version, name, authors, etc.). The main distinction between .deb

installers and other linux installers is that this file type specializes in Debian-based

distributions of linux. Since Linux is open source there are many different variations of

the operating system, Debian is a family of similar distributions.

● RPM is essentially the same thing as DEB except it is for Red Hat-based linux

distributions. The same logic applies, Red Hat refers to a family of similar linux

distributions. This is the family most related to the standard linux operating system which

makes it appealing.

● A tar.gz compressed application is a simple file type. To create one just navigate to your

project's main directory and execute a tar command to compress and zip all sub files and

directories into a single tar.gz file. This file can then be downloaded and unzipped on a

different machine. The benefit of this is that it should work on most if not all distributions

of linux and it is easy to create. The negatives are that this file does not include much of

the metadata that other installer files include, it is also harder to set up on the host system

because it requires the user to enter a specific command to the terminal to extract the

program.

3.4.3 Analysis
To compare these technologies and choose the one that best suits our needs, more specific

research will be needed. Since installers require an existing project in order to be tested, we will

need to use a sample C++ program during the testing phase.

Inno Setup

19

Figure 3.4.1

Table 3.4.2

Included above are some screenshots of the Inno Setup GUI. Everything was straight forward, it

asked for details, files, settings related to our project then it turned all of this data into a script

which is then compiled to generate our installer file. The file was tested, it asked for an

installation path and set everything up nicely. The uninstaller was also tested and worked as

expected. Overall this was a straightforward framework and we could definitely use this in our

project.

WiX Toolset

20

This product was underwhelming. There was no user friendly GUI and in order to build the

installer file you must manually create XML files to compile into the installer. Since this process

is rather complicated, we decided to cut this test short as it has already proven to be a worse

product for our purposes than Inno Setup was. Overall I cannot see us using this product for our

project.

NSIS

Figure 3.4.3

NSIS provided a nice GUI which asks for a zip file containing project code. A few other options

are able to be modified but none of them are really too critical. After generating the installer it

ran just as expected. This product is definitely an option for our team.

3.4.4 Chosen Approach
After considering these options we can immediately narrow down our choices for the windows

installer to NSIS and Inno Setup. Both options produce .exe installers. The GUIs for each are

different, there are less steps for the NSIS installer which could be a positive but in this case that

is a drawback since that means less customization. With that being said, Team Controller

believes that Inno Setup will be the best bet for this project considering the fact that it meets our

needs while remaining incredibly simple to understand and use.

21

Speed Simplicity Comfortability Average score

Inno Setup 4 5 5 4.67

WiX 5 3 2 3.33

NSIS 5 4 4 4.3

Table 3.4

For our Linux installer we are quite limited with our options. We will have to go with RPM due

to the fact that it covers the family of linux distributions that we have to accommodate in order to

meet our stretch goal. In addition to implementing our linux installer using RPM we should also

provide a tar.gz file for installing our application on non-red hat distributions of Linux as the cost

of creating a tar.gz file is negligible.

3.4.5 Proving Feasibility
To show that this technology will work for our project, we need to show that it is capable of

installing a program that contains all the functionality needed to complete this project. Both the

windows installer and the linux installer must be capable of handling programs with GUI and

serial communication modules.

22

4.0 Integration
The software application isn’t too complicated due to the fact it is all done locally so there isn’t

any need for a server or database. As seen in Figure 4.0, the weapon controller will plug into a

laptop and the product will gather all the data utilizing QT’s serial protocol library. The program

must also be able to process the three different types of serial protocol that Northrop Grumman

requires. Once the data is processed by the software’s back-end it then will output the data onto a

log file for later use. Both our back-end and front-end will utilize C++ since all the libraries the

team is going to use are in C++. Then all the data will be displayed on the graphical user

interface and allow for the user to interact with it. Then the user has an option to download the

log file if needed. Finally the program will be using the Inno Setup to create an .exe file for

windows and .rpm for linux.

Figure 4.0 System Diagram

23

5.0 Conclusion
Diagnostic systems are a necessary part of maintenance of any mechanical system. With the
implementation of this project, multi-billion dollar military equipment can be serviced
effectively with a lower cost to Northrop Grumman.

In summary, Team Controller will use C++ as the base programming language, the Qt Serial Port
library to assist in reading data from the weapon’s controller, and the Qt GUI library to create a
simple and modern graphical user interface. The team will also utilize the Inno Setup installer
software to help create installers for windows. For the team’s stretch goal to port to Linux, the
team will use RPM package manager. We have also ensured that all our technologies have
cross-platform capabilities to ensure that porting in the future is as easy and effective as possible.

The next steps for the team will be to create and refine small demonstrations to prove our
technologies’ feasibility. Afterwards, the team will begin building the requirements document by
connecting with our clients and listening carefully to their requests for what this software should
do.

24

6.0 References
[1] “James Webb Space Telescope, Built in Partnership with Northrop Grumman, Reveals

New View of the Universe,” Northrop Grumman Newsroom.

https://news.northropgrumman.com/news/releases/james-webb-space-telescope-built-in-partners

hip-with-northrop-grumman-reveals-new-view-of-the-universe

[2] “C vs C++ – What’s The Difference?,” freeCodeCamp.org, Nov. 04, 2021.

https://www.freecodecamp.org/news/c-vs-cpp-whats-the-difference/

[3] K. Ostrowska, “A Brief History of Python,” LearnPython.com, Jun. 20, 2022.

https://learnpython.com/blog/history-of-python/

[4] “Is C Platform Independent? Full Explanation | Developer Pitstop,”

developerpitstop.com, Apr. 18, 2023. https://developerpitstop.com/is-c-platform-independent/

[5] T. Statler, “Is Python Platform Independent?,” Comp Sci Central, Feb. 28, 2021.

https://compscicentral.com/is-python-platform-independent/

[6] “QT Serial port,” Qt Documentation, https://doc.qt.io/qt-6/qtserialport-index.html

(accessed Oct. 20, 2023).

[7] W. Woodall and J. Harrison, “Cross-platform, Serial Port Library,” GitHub,

https://github.com/wjwwood/serial (accessed Oct. 20, 2023).

[8] “Qt licensing,” Choose the Right License for Your Development Needs,

https://www.qt.io/licensing (accessed Oct. 20, 2023).

[9] C. M. Kohlhoff, “Serial Ports,” Boost C++ Libraries,

https://www.boost.org/doc/libs/1_76_0/doc/html/boost_asio/overview/serial_ports.html

(accessed Oct. 20, 2023).

[10] “20 Best Installers for Windows Programs as of 2023.” Slant, 14 Dec. 2015,

www.slant.co/topics/4794/~installers-for-windows-programs/

[11] “Inno Setup,” jrsoftware.org. https://jrsoftware.org/isinfo.php

[12] “Get started with WiX | WiX Toolset,” wixtoolset.org. https://wixtoolset.org/docs/intro/

(accessed Oct. 20, 2023).

[13] “NSIS Users Manual,” nsis.sourceforge.io. https://nsis.sourceforge.io/Docs/

[14] “How to install software in Linux (RPM/DEB systems) :: TutsWiki Beta,” tutswiki.com.

https://tutswiki.com/install-software-linux-yum-rpm-apt-dpkg/ (accessed Oct. 20, 2023).

25

https://news.northropgrumman.com/news/releases/james-webb-space-telescope-built-in-partnership-with-northrop-grumman-reveals-new-view-of-the-universe
https://news.northropgrumman.com/news/releases/james-webb-space-telescope-built-in-partnership-with-northrop-grumman-reveals-new-view-of-the-universe
https://www.freecodecamp.org/news/c-vs-cpp-whats-the-difference/
https://learnpython.com/blog/history-of-python/
https://developerpitstop.com/is-c-platform-independent/
https://compscicentral.com/is-python-platform-independent/
https://doc.qt.io/qt-6/qtserialport-index.html
https://github.com/wjwwood/serial
https://www.qt.io/licensing
https://www.boost.org/doc/libs/1_76_0/doc/html/boost_asio/overview/serial_ports.html
http://www.slant.co/topics/4794/~installers-for-windows-programs/
https://jrsoftware.org/isinfo.php
https://nsis.sourceforge.io/Docs/
https://tutswiki.com/install-software-linux-yum-rpm-apt-dpkg/

[15] “Cross-Platform GUI Programming with wxWidgets - wxWidgets,” www.wxwidgets.org.

https://www.wxwidgets.org/docs/book/

[16] “How to Create a C++ GUI Application Using Visual Studio? | Simplilearn,”

Simplilearn.com. https://simplilearn.com/tutorials/cpp-tutorial/cpp-gui#conclusion

(accessed Oct. 20, 2023).

[17] “Qt Designer Manual,” doc.qt.io. https://doc.qt.io/qt-6/qtdesigner-manual.html

26

https://www.wxwidgets.org/docs/book/
https://simplilearn.com/tutorials/cpp-tutorial/cpp-gui#conclusion
https://doc.qt.io/qt-6/qtdesigner-manual.html

